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Abstract
We describe a new Monte Carlo algorithm for studying large deviations of the
height of the pile from its mean value in the Oslo ricepile model. We have
used it to generate events which have probabilities of order 10−1000. These
simulations check our qualitative argument (Pradhan P and Dhar D 2006 Phys.
Rev. E 73 021303) that in the steady state of the Oslo ricepile model the
probability of large negative height fluctuations �h = −αL about the mean
varies as exp(−κα4L3) as L → ∞ with α held fixed and κ > 0.

PACS numbers: 05.10.Ln, 45.70.Ht, 05.65.+b, 05.60.Cd, 89.75.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Large deviations of fluctuations in a system have been studied extensively [1, 2] and
recently have attracted much attention especially in the non-equilibrium stationary states
of driven systems [3–6]. In a recent paper, we have argued that in the critical slope-
type stochastic toppling models in d dimensions the probability of large negative height
fluctuations �h = −αL about the mean for a system of size L decays superexponentially, as
exp

(−κα
d+2
1−ω Ld+2

)
, for L → ∞, with α > 0 held fixed [7]. Here, κ > 0 and ω is an exponent

defined by 〈(�h)2〉 ∼ L2ω. Since the arguments are plausible but not rigorous, it seems
worthwhile to check them by numerical simulations. However, straightforward sampling
techniques fail in this case, as the probabilities become very small even for fairly small L. For
example, for L = 10, in d = 1, already the probability of the minimum slope configuration is
of order 10−45.

In this paper, we numerically estimate the probabilities of large negative height fluctuations
of the pile in the steady state in the one-dimensional Oslo ricepile model using a variation
of the general ‘go with the winners’ strategy [8], adapted to our problem. We estimate the
full probability distribution function ProbL(�h) where �h is fluctuation of the height of the
pile about its mean value. This distribution has a scaling form L−ωg(�h/Lω). The 1D Oslo
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model is expected to be in the Edwards–Wilkinson universality class, for which ω = 1/4 [9].
Our non-rigorous arguments in [7] imply that in this case the scaling function should vary
as exp(−κx4) for x � −1 where κ > 0. Our numerical data fully supports the theoretical
expectation.

2. Definition of the model

The Oslo ricepile model [10, 11] is a stochastic sandpile-like model defined on a one-
dimensional lattice with a critical threshold value for the slope above which a toppling occurs,
and the threshold is randomly reset after each toppling. Here, we use an equivalent version
of the rules as given in [12]: we consider a chain of length L. A configuration of the pile is
specified by an integer height variable hi at each site i. The slope zi at site i is defined to
be hi − hi+1, with hL+1 ≡ 0 . Any site i with slope zi � 1 is stable. Any site i with slope
zi � 3 is said to be unstable and relaxes by toppling. Slope 2 can be either stable or unstable.
Whenever the slope at a site reaches the value 2 from a different value, because of incoming or
outgoing grains, it is created as an unstable 2 (denoted by 2̄). A 2̄ becomes stable 2 (denoted
by 2 without overbar) with probability p without any toppling, or it topples with probability
q = 1 −p. Whenever there is a toppling at site i, one grain is moved from the site i to i + 1. If
there is a toppling at the right end i = L, one grain goes out of the system. Grains are added
only at site 1 and only after avalanche caused by the previous grain has stopped.

The 1D Oslo ricepile model has a remarkable Abelian property that the final height
configuration does not depend on the order we topple the unstable sites [12]. Also,
after an addition of L(L + 1) grains to any configuration, the probabilities of different
stable configurations are exactly the same as in the steady state, independent of the initial
configuration [12]. The number of recurrent stable configurations in the steady state can be
calculated exactly and is approximately 1√

5

(
1+

√
5

2

)2L+1
for large L [13]. In the steady state

height profile fluctuates with an average slope between 1 and 2. The height h1 at the site 1 has
a stationary probability distribution, ProbL(h1), which is sharply peaked near its average value
h̄1. For large system size L, the average height h̄1 varies linearly with L, and the fluctuations
in h1 scale as a sublinear power of L, with variance of h1 varying as L2ω, with 0 < ω < 1.

3. Exact calculation of ProbL(h1) for small L

The probability distribution of h1 in the steady state can be exactly calculated numerically for
small L using the operator algebra satisfied by addition operators [12]. We recapitulate this
briefly here. We denote any configuration by specifying slope values at all sites from i = 1 to
i = L by a string of L integers (with or without overbar), e.g., |10 . . . 2̄2〉. For unstable site
1 < i < L, the rules are as given below:

| . . . , zi−1, 2̄, zi+1, . . .〉 → p| . . . , zi−1, 2, zi+1, . . .〉 + q| . . . , (zi−1 + 1), 0, (zi+1 + 1), . . .〉
| . . . , zi−1, 3̄, zi+1, . . .〉 → | . . . , (zi−1 + 1), 1, (zi+1 + 1), . . .〉. (1)

We use the convention 1̄ = 1 and 3̄ = 3. As a slope 1 is always stable, and slope 3 is always
unstable, the overbar may be omitted without any confusion. At the left end, rules are as given
above except that there is no left neighbour of site 1. At the right end i = L, the rules are

| . . . , zL−1, 2̄〉 → p| . . . , zL−1, 2〉 + q| . . . , (zL−1 + 1), 1〉
| . . . , zL−1, 3〉 → | . . . , zL−1 + 1, 2̄〉. (2)

Using these toppling rules repeatedly and the Abelian property, we can relax any unstable
configuration.
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Table 1. Table for the probability of the least mass configuration for L = 2, 3, 4.

L Probability of the least mass configuration

2 (1 + p)q4

3 (1 + 4p + 6p2 + 5p3 + 2p4)q10

4 (1 + 10p + 45p2 + 125p3 + 241p4 + 341p5 + 369p6 + 307p7 + 190p8 + 81p9 + 18p10)q20

Let us now consider the state vector |2̄2̄ . . . 2̄2̄〉 where all the slopes are unstable 2’s. If
we add one more grain at site i = 1 in this state, we get the same vector back by toppling
only at the sites with zi = 3 repeatedly. This implies that the vector obtained by relaxing this
vector fully is an eigenstate of the evolution operator with eigenvalue 1, and as the steady state
is unique this is the unique steady-state vector. If we relax this unstable configuration fully,
we get all the different recurrent stable configurations, each with probability same as in the
steady state. For example, if we relax |2̄2̄〉 for L = 2, we get the following sequence:

|2̄2̄〉 → p|22̄〉 + q|12̄〉 → p2|22〉 + pq|12〉 + pq|12̄〉 + q2|2̄1〉 → · · · →
p2|22〉 + (p + p2)q|12〉 + (p + p2)q2|21〉 + (p + p2)q3|02〉 + (1 + p)q4|11〉.

One can similarly calculate the steady-state probabilities for higher L. In table 1, we list
the resulting expression for the probability of the configuration |11 . . . 11〉 with all zi = 1
for L = 2, 3, 4. For larger L, the calculation becomes very tedious. There are two branches
for relaxing any unstable site with z = 2̄ and the total CPU time increases as exp(L3) as
O(L3) relaxations of unstable sites are required to reach the steady state1. The steady-state
probabilities for L up to 8 were calculated earlier by Corral [15]. We have calculated the
probability of the configuration |11 . . . 11〉 exactly numerically for L � 12 using a simple
code written in C. This configuration has the least slope, and the least mass amongst all
the recurrent configurations. We shall call it the least mass configuration. We used specific
numerical values p = q = 1/2, to simplify the calculation, so that the probabilities are simple
numbers and not polynomials in p. Even then, for L > 12, the computer time required
becomes prohibitive.

For large negative deviations, the probability becomes very small. Even for system size
as small as L = 6 and L = 7, the probabilities of the minimum mass configuration are
4.81 × 10−11 and 1.76 × 10−15, respectively. For L = 12, this probability is 1.23 × 10−55.
Clearly, this probability tends to zero as q tends to zero. We argued in [7] that this probability
is O(qm) with m = L(L + 1)(L + 2)/6, for q → 0, and is expected to decrease as
exp(−κ(q)L3) for all q, with κ(q) approximately equal to 1

6 log(1/q) for small q. In figure 1,
we have plotted negative of logarithm of the probability of the least mass configuration versus
L(L + 1)(L + 2) for q = 1/2. The linear increase is in agreement with the theoretical
expectation.

4. An unbiassed algorithm for the Oslo model

We start by describing a simple Monte Carlo algorithm to estimate probabilities of low-slope
configurations in the steady state using unbiassed sampling. We start with a configuration with
all sites unstable and all zi = 2̄. There is a random number, uniformly distributed between
0 and 1, at each site i. After each toppling, the random number at the site is replaced by a new
random number uniformly distributed between 0 and 1. Let the value of this random number
at site i at the end of the update step t be x(i, t). At t = 0, all x(i, 0) are independent random
variables lying between 0 and 1.

1 This time can be reduced to exp(L2) if we store the weights of exp(L) configurations to collect terms together.
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Figure 1. Logarithm (base 10) of the probability of occurrence of the minimum slope configuration,
calculated exactly numerically, is plotted against system size L(L + 1)(L + 2) in the Oslo ricepile
model.

As it does not matter in which order we topple the unstable sites, we choose the following
rule: at the beginning of any update step (all the unstable sites are with slope 2̄), we topple
at the site having the largest random number, if the random number is greater than p. If the
number is less than p, the avalanche stops. If this toppling produces any sites with slope 3,
we topple at these sites and reset the random number at that site. This is continued till there
are no sites left with slope 3. This constitutes the end of one update step. Note that one update
step may involve topplings at more than one sites, but only one of these had slope 2̄ just before
toppling, all others had slope 3.

It is clear that this algorithm produces different configurations with correct probability
weights.

The evolution of an avalanche up to time t can be specified by a sequence Tt giving for
each update step up to time t, the site with slope 2̄ selected for toppling and the random
number at that site at the time of toppling. Let j (t) be the 2̄ site selected for toppling at
the tth update step and y(t) be the value of the random number at j (t) at the time. Then
Tt = {[j (r), y(r)] : r = 1 to t}. The sequence Tt will be called the history of the avalanche
up to time t.

Our rule of selecting the unstable 2̄ site for toppling introduces correlations between
different x(i, t): if we know the random number at the site selected for toppling, random
number at all other non-selected unstable sites must be smaller. It turns out to be more
convenient to change to different set of variables {xmax(i, t)}. Here, xmax(i, t) is defined as
the maximum possible value of x(i, t), consistent with a given history Tt . At the beginning,
xmax(i, t = 0) = 1 for all i. The rule for updating this array as the avalanche proceeds is
simple: after each toppling, the random variable at the site at the site of toppling is replaced
by a new random number, and hence xmax at that site is reset to 1. If there is a toppling at a site
with slope 2̄, and the value of the random number at the toppling site is found to be ξ (this is
generated by a stochastic process in our algorithm), then at all other unstable sites j we reset
xmax(j) to ξ if its current value is greater than ξ . If the current value is less than ξ , it is left
unchanged.

During an avalanche, if we keep track of the variables xmax(i, t), we need not to maintain
and update the array x(i, t). Knowing Tt up to time t fully determines the set of unstable sites
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U(t), out of which the site with the maximum random number has to be selected at update
step t + 1 and also the values of xmax(i, t) for all sites i. This in turn determines the probability
distribution of y(t + 1) and the probability distribution of the position of toppling j (t + 1).

It is straightforward to determine the conditional joint probability distribution of
[j (t + 1), y(t + 1)], using the information in Tt . The conditional probability distribution
that x(j, t) is �x, given the value of xmax(j, t), is

Prob(x(j, t) � x|xmax(j, t)) = g

(
x

xmax(j, t)

)
(3)

where g(ξ) = ξ , for 0 � ξ � 1, and g(ξ) = 1 for ξ > 1. As there is no correlation between
the values x(j, t) for different j ’s for the same time t, beyond that implied by the conditions
that x(j, t) � xmax(j, t), we must have

Prob(y(t + 1) � y|Tt ) = �t(y) =
∏

j∈U(t)

g

(
y

xmax(j, t)

)
. (4)

It is straightforward to generate a random number with a given distribution of the form
equation (4) and to select the site for toppling amongst the unstable 2̄ sites, with the correct
probability weights. The detailed algorithm is given in the appendix. Using this algorithm,
we can generate {j (t + 1), y(t + 1)}, given Tt , and hence recursively generate the complete
avalanche.

We illustrate this procedure by a simple example. Consider a ricepile with L = 6. At
t = 0, we have U(0) = {1, 2, 3, 4, 5, 6}, as all sites are unstable, and xmax = 1 for all sites. In
this case, the probability distribution of y(1) is given by

Prob(y(1) � y) = y6, for 0 � y � 1. (5)

This can be generated as follows: select a random number z uniformly distributed between 0
and 1, and put y(1) = z1/6. If y(1) < p, the avalanche stops. If not, we choose j (1) as one
of the sites from U(0) at random, with equal probability. Say, we get j (1) = 2. Then, we
assign xmax(j, 1) = y(1) for all j ∈ U(0), except j = 2, for which we set xmax(2, 1) = 1 and
topple at site 2. We then topple at any sites with slope 3, and reset the xmax at that site to 1.
Finally, we get the configuration with U(1) = {2, 3, 4, 5, 6}, and xmax at all these sites is 1.
Then, from equation (4),

Prob(y(2) � y) = y5, for 0 � y � 1. (6)

We generate a random value with this distribution and set y(2) equal to that value. If y(2) < p,
the avalanche stops. If not, we choose j (2) at random from U(1), say j (2) = 4. Toppling at
this site, and then toppling at sites with slope 3, finally we get the configuration of unstable
sites U(2) = {1, 3, 4, 5, 6}, and xmax is reset to 1 at all these sites. We now generate the
variable y(3), which turns out to have the same distribution as y(2). Now, if y(3) > p, we
choose a site from U(2) and so on.

5. Modified algorithm for biassed sampling

If the unbiassed algorithm outlined above is repeated many times, the fractional number of
configurations with a given value of h1 gives an estimate of the corresponding probability.
However, this method is clearly unsuitable for estimating probabilities which are much smaller
than 10−10. For estimating quantities like the probability of the minimal slope configuration
in the steady state, this method is useless for L > 6 or so.

Clearly, we need to implement some sort of biassed sampling. In the simplest
implementation, one thinks of different possible configurations in the course of evolution
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of an avalanche at each step t as a branching tree. If we reach a configuration Ct at a node
at the tth step, the probability of the process stopping is, say, a(Ct ). If we want to sample
the low-slope configurations, we do not want the process to die too soon. Then we do not
select any of the nodes that correspond to stable configurations and select one of the remaining
branches with probability equal to their original probability, divided by the factor [1 − a(Ct )],
and the final survival probability is estimated by product of such factors. This is the basic idea
of ‘enrichment’ in the ‘go with the winners’ strategy [8].

However, this procedure also is not satisfactory for our problem as there are some unstable
nodes all of whose possible resulting stable configurations have heights greater than the
minimum height. For example let us consider a case for L = 5 where |21102̄〉 has two
descendants |21102〉 and |21111〉, both stable. In the branching tree, these are like leaf nodes.
The relaxation process will die after one step if we encounter any such unstable configurations.
But it is difficult to identify these directly and avoid them, without a computationally expensive
depth search. So the resulting process still has a nonzero probability of reaching such a node
at the next step, and the overall probability of survival still decreases exponentially with the
depth of the tree.

However, in our algorithm, working with {xmax(i, t)}, it is straightforward to impose
the condition that each selected random number y(t) is greater than p. Let F(j + 1) be the
conditional probability that the random number at the (j + 1)th update step is �p, given
the previous history of avalanche. Clearly, we have F(t + 1) equals to [1 − �t(p)]. i.e.,

F(t + 1) = 1 −
∏

j∈U(t)

g

(
p

xmax(j, t)

)
. (7)

Under the condition that y(t + 1) > p, the corresponding conditional distribution of
y(t + 1) is given by

Prob(y(t + 1) � y|Tt , y(t + 1) � p) = [�t(y) − �t(p)]/F (t + 1) (8)

with φt(p) defined by equation (4).
The relative weight of a particular history Tt being realized without the avalanche getting

stopped is
∏t

t ′=1 F(t ′). We calculate the attrition factor F(t + 1) using equation (7). We
then randomly select one of the sites in U(t) for toppling using the correct relative weights
described in the appendix. This determines j (t +1). We topple at j (t +1), and at any resulting
sites with slope 3, update the values of xmax(j, t + 1) at all j ∈ U(t). We make the list U(t + 1)

of sites with slope 2̄. This then completes the update step (t + 1). Repeat.
After we start relaxing the unstable configuration |2̄2̄2̄ . . . . . . 2̄〉, the height at site 1

gradually decreases. At some step of relaxation, the height at first site becomes h1 � h for
the first time in the course of relaxation. We multiply all the previous factors, F(t)’s, up to
this step and this product gives

W(h) =
∏

{t :h1(t)>h}
F(t). (9)

Averaging W(h) over many initial realizations, we get the probability of height at the first site
being less than or equal to h, i.e.,

ProbL(h1 � h) = 〈W(h)〉.
The estimate of probability of the least mass configuration is obtained by calculating the

weight function

Wmin =
tmax∏
t=1

F(t) (10)
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Figure 2. The frequency distribution of − log10(Wmin) taking bin size = 1 and starting with 106

initial realizations for L = 20. We fit the left tail of the data points with a Gaussian distribution
with mean µ ≈ 253.4 and variance σ 2 ≈ 55.

where tmax is the (random) number of update steps t required to reach the least mass
configuration. Since, now one can always find y(t), each avalanche continues until it reaches
the minimum mass configuration. For different realizations, we get different values of Wmin

and, similarly as above, averaging over different values by taking many realizations gives us
the probability of the minimum slope.

We illustrate this modified procedure for the simple example given before at the end of
section 4 for the unbiassed case. At t = 0, we have U(0) = {1, 2, 3, 4, 5, 6}, as all sites are
unstable. Also, at this stage xmax = 1 for all sites. In this case, the probability distribution of
y(1) is given by

Prob(y(1) � y|y(1) > p) = (y6 − p6)/(1 − p6), for p � y � 1. (11)

In generating y(1), as before, we generate a random number z uniformly between 0 and 1 put
y(1) = z1/6. If, however, y(1) < p, we discard this value and choose another z. We calculate
F(1) using equation (7) and get F(1) = 1 − p6. After having generated y(1), we proceed
as before to randomly select j (1), topple the sites, and update the xmax array, and determine
U(1) = {2, 3, 4, 5, 6}. Then, F(2) = 1 − p5, and the probability distribution of y(2) is
given by

Prob(y(2) � y|y(1) > p) = (y5 − p5)/(1 − p5), for p � y � 1. (12)

This is generated by choosing a random number z lying between 0 and 1, and putting
y(2) = z1/5 if y(2) > p, and rejecting the trial value of y(2), if it falls below p. We
then choose one of the sites to topple as j (2) as before. And so on. At each stage, if the trial
value of y(t) is less than p, we reject the move and try again.

6. Results

We repeat the above procedure for many realizations and take the average of logarithm of the
weight W(h). In figure 2, we have plotted the numerically obtained distribution of log Wmin

using 106 initial realizations for L = 20. It has a peak at log Wmin ≈ −253.4 and decays
rapidly away from the peak. We fit the data point at the left of the peak value to a Gaussian
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distribution with mean µ ≈ −253.4 and variance σ 2 ≈ 55. It should be noted here that
our simulation cannot accurately estimate the probabilities of minimal mass configurations
for large L and the fractional error may be large, but the logarithms of the probabilities can
be estimated with reasonably small fractional error. This is similar to the Monte Carlo
in equilibrium statistical physics, where thermodynamic quantities like free energy can be
estimated well, but not the partition function.

As a check of our simulation algorithm, we calculated the probability of the minimum
slope configurations for small L and the numerical values match well with the values obtained
from exact numerical calculation using the method in section 3. For example, the probability
of the minimum slope, for L = 5, is calculated to be 1.475×10−7 after averaging the data over
106 realizations and the value is correct upto three significant digits. We have compared our
results obtained from two procedures, i.e., the Monte Carlo simulation and exact numerical
calculation and plotted negative of logarithm of the probabilities against L in figure 3 for
L � 12.

For h near L,W(h) is a product of approximately L3 different factors F(t)’s, the logarithm
of W(h) is a sum of L3 random variables. While these variables F(t)’s are neither strictly
independent nor they are identically distributed, our simulations suggest that correlations
between these factors at different times are weak, so that we can expect central-limit-theorem-
like result to hold. Then log[W(h � L)] may be expected to be normally distributed with a
mean and variance both proportional to L3 and W(h) would be log-normally distributed. In
fact, the numerically obtained probability distribution function of log(W) shows significant
deviations from Gaussian (figure 2).

Assuming that the distribution of the random variable X = − ln[W(h � L)] has the form
1√

2πσ 2
exp

[− (X−µ)2

2σ 2

]
, we get the probability of the minimum slope equal to

ProbL(h1) = 〈W(h1)〉 = 〈e−X〉. (13)

Thus, if the Gaussian approximation holds for the distribution,

ln〈W(h)〉 ≈ 〈ln W(h)〉 +
σ 2

2
. (14)
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This estimate need not be precise as the terms contribute significantly to 〈W(h � L)〉 are in
the tail of the distributions and central limit theorem need not hold there.

However, our numerical estimate indicates that this approximation is indeed very good.
This is because the deviations from the Gaussian behaviour are stronger for smaller values of
W , but these do not contribute much to 〈W 〉. For example, from the simulation for L = 15,
we get µ ≈ −270, σ 2 ≈ 95, ln〈Wmin〉 ≈ −229. The Gaussian approximation to distribution
of ln Wmin would give ln〈Wmin〉 ≈ −223. In figure 4, we have compared the actual values
of log10〈Wmin〉 from the simulation with the estimate from the Gaussian approximation for
different values of the system size L.

In figure 5, we have plotted negative of 〈log Wmin〉 as a function of L and fitted it with
a curve ax3 + bx2 + cx. We get a god fit for a = 0.0234 ± 0.0001, b = 0.16 ± 0.05 and
c = 0.1 ± 0.2.
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Figure 6. Scaling collapse for the probability distribution of height at site 1 for systems of size
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averaged over 106 realizations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2000  4000  6000  8000  10000  12000

-l
og

10
[P

ro
b L

(∆
h 1

 <
 h

)]

h4/L

L=10
L=20
L=30
L=40

Figure 7. log10[ProbL(�h1/L
1/4 < −x)], for x > 0, has been plotted against the scaling variable

x4 where �h1 = (h1 − h̄1). The data points are fitted with a straight line 0.11x and it shows that
the scaling function g(−x) varies as exp(−κx4) for x  1.

Now we calculate the full probability distribution ProbL(h1) of height h1 at site 1. We
take the average of this product over many realizations and also study the distribution
ProbL(h1 = h) as a function of h, for L = 10, 20, 30, 40. The data are averaged over 106

initial realizations. In figure 6, we get a good scaling collapse by plotting LωProbL(h1 = h)

against the scaling variable (h1 − h̄1)/L
ω where ω ≈ 1/4. Therefore, ProbL(h1 = h) has a

scaling form ProbL(h1) = L−1/4g[(h1 −〈h1〉)/L1/4] at the central region as well as at the tail.
We see from the scaling plot that the scaling function is highly asymmetric about the origin.

Since the probability of minimum slope configurations varies as exp(−κ ′L3) for large L
where κ ′ > 0 and the height fluctuation �h1 = (h1 − h̄1) scales with system sizes as L1/4,
the scaling function g(x) must vary as exp(−κx4), where κ > 0 is some other constant. In
figure 7, we plot logarithm of ProbL(�h1/L

1/4 < −x) versus x4 for x > 0 (i.e., fluctuations
below average height). The data give a reasonably good fit to a straight line with slope 0.11.



Sampling rare fluctuations of height in the Oslo ricepile model 2649

x

x

u

1uv

5u2

3v

2 2u v

2u
x3

x

Pr
ob

( 
   

   
<

 x
)

 x  
m

ax

Figure 8. The probability Prob(xmax < x) of xmax being less than x versus x.

7. Summary

We have performed a Monte Carlo simulation using importance sampling to study large
deviations in the one-dimensional Oslo ricepile model. We estimated probabilities of large
height fluctuations of the pile and these probabilities are of order 10−1000 or even smaller (see
figure 7). We have shown that logarithm of the probability of large negative height fluctuation
�h = −αL varies as −α4L3 for large L. We also calculated numerically the full probability
distribution of the height of the pile and found that it has scaling form L−1/4g(�h/L1/4), with
log[g(x)] varying as −x4 for large negative x.
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Appendix

We illustrate the procedure for generating the largest among x(j, t)’s, where j ∈ u, using
the algorithm given here. Consider independent random variables x1, x2, x3, x4, x5 which
are known to be uniformly distributed between the respective intervals x1 ∈ [0, 1], x2 ∈
[0, u], x3 ∈ [0, u], x4 ∈ [0, v] and x5 ∈ [0, v]. We may take 1 � u � v without loss of
generality. Then, the cumulative probability distribution of y, the largest among these random
numbers, is given by

Prob(y � x) = x, for u � x � 1,

= x3/u2, for v � x � u,

= x5/(u2v2), for 0 � x � v. (A.1)

The distribution is drawn schematically in figure 8. To generate a variable y with this
distribution, we use the following algorithm: generate a number z randomly between 0 and 1.
Then, following cases are possible:

(1) If u < z � 1, we choose the largest random number to be y = z and the maximum is
surely x5.
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(2) If v3/u2 < z � u, we choose the largest random number to be y = (zu2)1/3 and the
maximum is chosen from x3, x4 and x5 with probability 1/3 each.

(3) If 0 � z � v3/u2, we choose the largest random number to be y = (zu2v2)1/5 and the
maximum is chosen from x1, x2, x3, x4 and x5 with probability 1/5 each.

In the modified procedure, the only change made is that we reject the value of y, if it is less
than p, and choose a new random number z, and proceed as before. Probability distributions
for the maximum of more variables can be obtained similarly.
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